- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Li, Pengtao (2)
-
Liu, Yuling (2)
-
Lu, Quanwei (2)
-
Peng, Renhai (2)
-
Wang, Tao (2)
-
Wei, Yangyang (2)
-
Zhang, Baohong (2)
-
Cai, Xiaoyan (1)
-
Conover, Justin L (1)
-
Ghazal, Hassan (1)
-
Grover, Corrinne E (1)
-
Gu, Haonan (1)
-
Hou, Yuqing (1)
-
Hu, Guanjing (1)
-
Hu, Nan (1)
-
Hu, Shoulin (1)
-
Liu, Fang (1)
-
Liu, Zhen (1)
-
Tian, Shilin (1)
-
Unver, Turgay (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cotton is an important natural fiber crop. The RF2 gene family is a member of the bZIP transcription factor superfamily, which plays an important role in plant resistance to environmental stresses. In this paper, the RF2 gene family of four cotton species was analyzed genome-wide, and the key gene RF2-32 was cloned for functional verification. A total of 113 RF2 genes were identified in the four cotton species, and the RF2 family was relatively conserved during the evolution of cotton. Chromosome mapping and collinear analysis indicated that fragment replication was the main expansion mode of RF2 gene family during evolution. Cis-element analysis showed that there were many elements related to light response, hormone response and abiotic stress response in the promoters of RF2 genes. The transcriptome and qRT-PCR analysis of RF2 family genes in upland cotton showed that RF2 family genes responded to salt stress and drought stress. GhRF2-32 protein was localized in the cell nucleus. Silencing the GhRF2-32 gene showed less leaf wilting and increased total antioxidant capacity under drought and salt stress, decreased malondialdehyde content and increased drought and salt tolerance. This study revealed the evolutionary and functional diversity of the RF2 gene family, which laid a foundation for the further study of stress-resistant genes in cotton.more » « less
-
Peng, Renhai; Xu, Yanchao; Tian, Shilin; Unver, Turgay; Liu, Zhen; Zhou, Zhongli; Cai, Xiaoyan; Wang, Kunbo; Wei, Yangyang; Liu, Yuling; et al (, Proceedings of the National Academy of Sciences)Allotetraploid cotton (Gossypium) species represents a model system for the study of plant polyploidy, molecular evolution, and domestication. Here, chromosome-scale genome sequences were obtained and assembled for two recently described wild species of tetraploid cotton,Gossypium ekmanianum[(AD)6,Ge] andGossypium stephensii[(AD)7,Gs], and one early form of domesticatedGossypium hirsutum, racepunctatum[(AD)1,Ghp]. Based on phylogenomic analysis, we provide a dated whole-genome level perspective for the evolution of the tetraploidGossypiumclade and resolved the evolutionary relationships ofGs,Ge, and domesticatedG. hirsutum. We describe genomic structural variation that arose duringGossypiumevolution and describe its correlates—including phenotypic differentiation, genetic isolation, and genetic convergence—that contributed to cotton biodiversity and cotton domestication. Presence/absence variation is prominent in causing cotton genomic structural variations. A presence/absence variation-derived gene encoding a phosphopeptide-binding protein is implicated in increasing fiber length during cotton domestication. The relatively unimprovedGhpoffers the potential for gene discovery related to adaptation to environmental challenges. Expanded gene families enoyl-CoA δ isomerase 3 and RAP2-7 may have contributed to abiotic stress tolerance, possibly by targeting plant hormone-associated biochemical pathways. Our results generate a genomic context for a better understanding of cotton evolution and for agriculture.more » « less
An official website of the United States government
